tos tales como el tamaño de las celdas. los representantes de EEUU y algún otro país proponían un tamaño de celdas grande de unos 64 bytes. Sin embargo para los representantes de los países europeos el tamaño ideal de las celdas era de 32 bytes (Según Tanenbaum), y señalaban que un tamaño de celda de 64 bytes provocaría retardos inaceptables de hasta 85 ms.Este retardo no permitiría la transmisión de voz con cierto nivel de calidad a la vez que obligaba a instalar canceladores de eco. Después de muchas discusiones y ante la falta de acuerdo, en la reunión del CCITT celebrada en Ginebra en Junio de 1989 se tomó una decisión salomónica: “Ni para unos ni para otros. 48 bytes será el tamaño de la celda”. Para la cabecera se tomó un tamaño de 5 bytes.
Descripción del proceso ATM
Con esta tecnología, a fin de aprovechar al máximo la capacidad de los sistemas de transmisión, sean estos de cable o radioeléctricos, la información no es transmitida y conmutada a través de canales asignados en permanencia, sino en forma de cortos paquetes (celdas ATM) de longitud constante y que pueden ser enrutadas individualmente mediante el uso de los denominados canales virtuales y trayectos virtuales.Figura 1.- Diagrama simplificado del proceso ATM
En la Figura 1 se ilustra la forma en que diferentes flujos de información, de características distintas en cuanto a velocidad y formato, son agrupados en el denominado Módulo ATM para ser transportados mediante grandes enlaces de transmisión a velocidades (bit rate) de 155 o 622 Mbit/s facilitados generalmente por sistemas SDH.
En el terminal transmisor, la información es escrita byte a byte en el campo de información de usuario de la celda y a continuación se le añade la cabecera.
En el extremo distante, el receptor extrae la información, también byte a byte, de las celdas entrantes y de acuerdo con la información de cabecera, la envía donde ésta le indique, pudiendo ser un equipo terminal u otro módulo ATM para ser encaminada a otro destino. En caso de haber más de un camino entre los puntos de origen y destino, no todas las celdas enviadas durante el tiempo de conexión de un usuario serán necesariamente encaminadas por la misma ruta, ya que en ATM todas las conexiones funcionan sobre una base virtual.
Formato de las celdas ATM
Son estructuras de datos de 53 bytes compuestas por dos campos principales:
Header, sus 5 bytes tienen tres funciones principales: identificación del canal, información para la detección de errores y si la célula es o no utilizada. Eventualmente puede contener también corrección de errores y un número de secuencia.
Payload, tiene 48 bytes fundamentalmente con datos del usuario y protocolos AAL que también son considerados como datos del usuario.
Dos de los conceptos más significativos del ATM, Canales Virtuales y Rutas Virtuales, están materializados en dos identificadores en el header de cada célula (VCI y VPI) ambos determinan el enrutamiento entre nodos. El estándar define el protocolo orientado a conexión que las transmite y dos tipos de formato de celda:
NNI (Network to Network Interface o interfaz red a red) El cual se refiere a la conexión de Switches ATM en redes privadas
UNI (User to Network Interface o interfaz usuario a red) este se refiere a la conexón de un Switch ATM de una empresa pública o privada con un terminal ATM de un usuario normal, siendo este último el más utilizado.
Campos
GFC (Control de Flujo Genérico, Generic Flow Control, 4 bits): El estándar originariamente reservó el campo GFC para labores de gestión de tráfico, pero en la práctica no es utilizado. Las celdas NNI lo emplean para extender el campo VPI a 12 bits.
VPI (Identificador de Ruta Virtual, Virtual Path Identifier, 8 bits) y VCI (Identificador de Circuito Virtual, Virtual Circuit Identifier, 16 bits): Se utilizan para indicar la ruta de destino o final de la celula.
PT (Tipo de Información de Usuario, Payload type, 3 bits): identifica el tipo de datos de la celda (de datos del usuario o de control).
CLP (Prioridad, Cell Loss Priority, 1 bit): Indica el nivel de prioridad de las celda, si este bit esta activo cuando la red ATM esta congestionada la celda puede ser descartada.
HEC (Corrección de Error de Cabecera, Header Error Correction, 8 bits): contiene un código de detección de error que sólo cubre la cabecera (no la información de usuario), y que permite detectar un buen número de errores múltiples y corregir errores simples.
Encaminamiento
ATM ofrece un servicio orientado a conexión, en el cual no hay un desorden en la llegada de las celdas al destino. Esto lo hace gracias a los caminos o rutas virtuales (VP) y los canales o circuitos virtuales (VC). Los caminos y canales virtuales tienen el mismo significado que los Virtual Chanel Connection (VCC) en X.25, que indica el camino fijo que debe seguir la celda. En el caso de ATM, los caminos virtuales (VP), son los caminos que siguen las celdas entre dos enrutadores ATM pero este camino puede tener varios canales virtuales (VC).
La ruta inicial de encaminamiento se obtiene, en la mayoría de los casos, a partir de tablas estáticas que residen en los conmutadores. También podemos encontrar tablas dinámicas que se configuran dependiendo del estado de la red al comienzo de la conexión; éste es uno de los puntos donde se ha dejado libertad para los fabricantes. Gran parte del esfuerzo que están haciendo las compañías está dedicando a esta área, puesto que puede ser el punto fundamental que les permita permanecer en el mercado en un futuro.
Perspectiva de la tecnología ATM
El Modo de Transferencia Asíncrona fue la apuesta de la industria tradicional de las telecomunicaciones por las comunicaciones de banda ancha. Se planteó como herramienta para la construcción de redes de banda ancha (B-ISDN) basadas en conmutación de paquetes en vez de la tradicional conmutación de circuitos. El despliegue de la tecnología ATM no ha sido el esperado por sus promotores. Las velocidades para las que estaba pensada (hasta 622 Mbps) han sido rápidamente superadas; no está claro que ATM sea la opción más adecuada para las redes actuales y futuras, de velocidades del orden del gigabit. ATM se ha encontrado con la competencia de las tecnologías provenientes de la industria de la Informática, que con proyectos tales como la VoIP parece que ofrecen las mejores perspectivas de futuro.
En la actualidad, ATM es ampliamente utilizado allá donde se necesita dar soporte a velocidades moderadas, como es el caso de la ADSL, aunque la tendencia es sustituir esta tecnología por otras como Ethernet que esta basada en tramas de datos.
La red de hoy
La red de comunicaciones terrestres actual está basada en multiplexadores:
Las siglas del gráfico significan:
CDSCC: Canberra Deep-Space Communications Complex
GDSCC: Goldstone Deep-Space Communications Complex
MDSCC: Madrid Deep-Space Communications Complex
GSFC: Goddard Space Flight Center
Los multiplexadores de la red son propiedad del JPL o de Nascom. El sistema Nascom 2000 es un servicio doméstico contratado con AT&T.
La red del mañana
La siguiente red terrestre de comunicaciones de la DSN estará basada en conmutadores ATM, que son capaces de priorizar el tráfico y de proporcionar ancho de banda bajo demanda. La topología seguirá siendo en estrella con la capacidad de usar circuitos virtuales permanentes o conmutados entre cualesquiera de los nodos de la DSN:
Se producirán los siguientes beneficios:
Proveer de ancho de banda bajo demanda y compartir dinámicamente el ancho de banda no utilizado.
Soportar nuevas aplicaciones y misiones sin necesidad de nuevos circuitos.
Capacidad de utilizar los servicios comerciales de ATM y conectar con el CTI de la NASA cuando sea necesario.
Mantenimiento de las funciones de la red desde un solo punto de control.